بررسی اثر زایموزان استخراج شده از ساکارومایسس سرویسیه بر رشد تومور و القاء آپوپتوز در سلول‌های توموری ملانوما

نوع مقاله: مقاله پژوهشی (اصیل)

نویسندگان

1 مرکز تحقیقات قارچ شناسی، دانشکده دامپزشکی دانشگاه تهران

2 گروه ایمنی‌شناسی، دانشکده پزشکی دانشگاه علوم پزشکی تهران

چکیده

ملانومابدخیم­ترینفرمسرطانپوستاست کهازسلول­هایپیگمانی ملانوسیتیمنشاءمی­گیرد. زایموزان ترکیب غیر محلول از دیواره سلولی مخمر ساکارومایسس سرویسیه می­باشد که ساختاری تشکیل شده از بتاگلوکان متصل به پروتئین دارد. در این مطالعه اثر زایموزان استخراج شده از ساکارومایسس سرویسیه بر میزان رشد و آپوپتوز در رده سلولی ملانوما­ مورد بررسی قرار گرفت. سلول­های توموری در محیط کشت 1640RPMI حاوی 10 درصد سرم جنین گاو در دمای C°37 و اتمسفر دارای 5 درصد دی اکسید کربن و %95 رطوبت کشت شدند. بعد از 24 ساعت، سلول­ها با زایموزان در غلظت­های مختلف به مدت 48 ساعت و 72 ساعت تیمار شدند. میزان رشد سلولی با روش MTT مورد بررسی قرار گرفت. میزان مرگ سلولی با کیت Annexin-V و پروپیدیوم یداید و با استفاده از دستگاه فلوسیتومتری بررسی گردید. نتایج نشان داد که زایموزان بطور معنی­داری از رشد سلول­های سرطانی در محیط کشت جلوگیری می­کند. زایموزان همچنین در غلظت­های g/ml μ 25 و g/ml μ 50 باعث القاء آپوپتوز در سلول­های سرطانی شد و از رشد تومور ممانعت کرد. با توجه به اینکه زایموزان توانایی القاء آپوپتوز در سلول­های توموری دارد به نظر می­رسد ترکیب مناسبی جهت استفاده برای مهار رشد سلول­های توموری باشد و تحقیقات بیشتر در این زمینه به منظور استفاده از آن در بیوتراپی سرطان امیدبخش است.

کلیدواژه‌ها


  1. Adachi, Y., Okazaki, M., Ohno, N., Yadomae, T. (1997). Leukocyte activation by (1→ 3)-β-D glucans. Mediators of Inflammation 6:251-56.
  2. Chiba, N., Ohno, N., Terui, T., Adachi, Y., Yadomae, T. (1996). Effect of highly branched (1-> 3)-β-D-glucan, OL-2, on zymosan-mediated hydrogen peroxide production by murine peritoneal macrophages. Pharmaceutical and Pharmacological Letters 6:12-15.
  3. Daum, T., Rohrbach, M.S. (1992). Zymosan induces selective release of arachidonic acid from rabbit alveolar macrophages via stimulation of a beta-glucan receptor. FEBS Letters 309:119-22.
  4. Denicourt, C., Dowdy, S.F. (2004). Targeting apoptotic pathways in cancer cells. Science 305:1411-13.
  5. Di Carlo, F. J., Fiore, J.V. (1958). On the composition of zymosan. Science 127:756-57.
  6. Duan, X., Ackerly, M., Vivier, E., Anderson, P. (1994). Evidence for involvement of β-glucan-binding cell surface lectins in human natural killer cell function. Cellular Immunology 157:393-402.
  7. Fullerton, S., Samadi, A., Tortorelis, D., Choudhury, M., Mallouh, C., Tazaki, H., Konno, S. (1999). Induction of apoptosis in human prostatic cancer cells with beta-glucan (Maitake mushroom polysaccharide). Molecular Urology 4:7-13.
  8. Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S., Underhill, D.M. (2003). Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. The Journal of Experimental Medicine 197:1107-17.
  9. Herrmann, F., Bambach, T., Bonifer, R., Lindemann, A., Riedel, D., Oster, W., Mertelsmann, R. (1988). The suppressive effects of recombinant human tumor necrosis factor‐alpha on normal and malignant myelopoiesis: Synergism with interferon‐gamma. The International Journal of Cell Cloning 6:241-61.
  10. Hossini, A.M., Eberle, J., Fecker, L.F., Orfanos, C.E., Geilen, C.C. (2003). Conditional expression of exogenous Bcl-XS triggers apoptosis in human melanoma cells in vitro and delays growth of melanoma xenografts. FEBS letters 553:250-56.
  11. Jena, J., Ranjan, R., Ranjan, P., Sarangi, M.K. (2012). A Study on Natural Anticancer Plants. International Journal of Pharmaceutical Chemistry1:365-68.
  12. Leist, M., Jäättelä, M. (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology 2:589-98.
  13. Manners, D.J., Masson, A.J., Patterson, J.C. (1973). The structure of a beta-(1->3)-D-glucan from yeast cell walls. Biochemical Journal135:19-30.
  14. Nobili, S., Lippi, D., Witort, E., Donnini, M., Bausi, L., Mini, E., Capaccioli, S. (2009). Natural compounds for cancer treatment and prevention. Pharmacological Research 59:365-78.
  15. Ohno, N., Miura, T., Miura, N., Adachi, Y., Yadomae, T. (2001). Structure and biological activities of hypochlorite oxidized zymosan. Carbohydrate Polymers 44:339-49.
  16. Palladino, M.A., Shalaby, M.R., Kramer, S.M., Ferraiolo, B.L., Baughman, R.A., Deleo, A., Crase, D., Marafino, B., Aggarwal, B., Figari, I. (1987). Characterization of the antitumor activities of human tumor necrosis factor-alpha and the comparison with other cytokines: induction of tumor-specific immunity. The Journal of Immunology 138:4023-32.
  17. Park, H.J., su Han, E., Park, D.K. (2010). The ethyl acetate extract of PGP (Phellinus linteus grown on Panax ginseng) suppresses B16F10 melanoma cell proliferation through inducing cellular differentiation and apoptosis. Journal of Ethnopharmacology 132:115-21.
  18. Parzonko, A., Makarewicz-Wujec, M., Jaszewska, E., Harasym, J., Kozłowska-Wojciechowska, M. (2015). Pro-apoptotic properties of (1,3)(1,4)-β-d-glucan from Avena sativa on human melanoma HTB-140 cells in vitro. International Journal of Biological Macromolecules 72:757-63.
  19. Qi, C., Cai, Y., Gunn, L., Ding, C., Li, B., Kloecker, G., Qian, K., Vasilakos, J., Saijo, S., Iwakura, Y. (2011). Differential pathways regulating innate and adaptive anti-tumor immune responses by particulate and soluble yeast-derived β-glucans. Blood 117:6825–36.
  20. Queiroz, E.A., Fortes, Z.B., da Cunha, M.A., Barbosa, A.M., Khaper, N., Dekker, R.F. (2015). Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. The International Journal of Biochemistry & Cell Biology 67:14-24.
  21. Rice, P.J., Kelley, J.L., Kogan, G., Ensley, H.E., Kalbfleisch, J.H., Browder, I.W., Williams, D.L. (2002). Human monocyte scavenger receptors are pattern recognition receptors for (1→3)-β-D-glucans. Journal of Leukocyte Biology 72:140-46.
  22. Sakurai, T., Kaise, T., Yadomae, T., Matsubara, C. (1997). Different role of serum components and cytokines on alveolar macrophage activation by soluble fungal (1→3)-β-d-glucan. European Journal of Pharmacology 334:255-63.
  23. Sato, M., Sano, H., Iwaki, D., Kudo, K., Konishi, M., Takahashi, H., Takahashi, T., Imaizumi, H., Asai, Y., Kuroki, Y. (2003). Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-κB activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. The Journal of Immunology 171:417-25.
  24. Sorenson, W., Shahan, T.A., Simpson, J. (1998). Cell wall preparations from environmental yeasts: effect on alveolar macrophage function in vitro. Annals of Agricultural and Environmental Medicine 5:65-72.
  25. Tapper, H., Sundler, R. (1995). Glucan receptor and zymosan-induced lysosomal enzyme secretion in macrophages. Biochemical Journal 306:829-35.
  26. Taylor, P.R., Tsoni, S.V., Willment, J.A., Dennehy, K.M., Rosas, M., Findon, H., Haynes, K., Steele, C., Botto, M., Gordon, S. (2007). Dectin-1 is required for β-glucan recognition and control of fungal infection. Nature Immunology 8:31-38.
  27. Underhill, D.M., Ozinsky, A., Hajjar, A.M., Stevens, A., Wilson, C.B., Bassetti, M., Aderem, A. (1999). The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811-15.
  28. Xia, Y., Větvička, V., Yan, J., Hanikýřová, M., Mayadas, T., Ross, G.D. (1999). The β-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. The Journal of Immunology 162:2281-90.
  29. Young, S.H., Ye, J., Frazer, D.G., Shi, X., Castranova, V. (2001). Molecular mechanism of tumor necrosis factor-α production in 1→3-β-glucan (zymosan)-activated macrophages. Journal of Biological Chemistry 276:20781-87.
  30. Zhang, M., Chiu, L. C.M., Cheung, P.C., Ooi, V.E. (2006). Growth-inhibitory effects of a β-glucan from the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: Cell-cycle arrest and apoptosis induction. Oncology Reports 15:637-43.
  31. Zimmerman, J.W., Lindermuth, J., Fish, P.A., Palace, G.P., Stevenson, T.T., DeMong, D. E. (1998). A novel carbohydrate-glycosphingolipid interaction between a β-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. Journal of Biological Chemistry 273:22014-20.